Lung tissue responses and sites of particle retention differ between rats and cynomolgus monkeys exposed chronically to diesel exhaust and coal dust.

نویسندگان

  • K J Nikula
  • K J Avila
  • W C Griffith
  • J L Mauderly
چکیده

Several chronic inhalation bioassays of poorly soluble, nonfibrous particles have resulted in an increased incidence of lung tumors in rats, no increase in lung tumors in Syrian hamsters, and inconsistent results in mice. These results have raised concerns that rats may be more prone than other species to develop persistent pulmonary epithelial hyperplasia, metaplasia, and tumors in response to the accumulation of inhaled particles. In addition, particle deposition and the rate of particle clearance from the lung differ between rats and primates, as does the anatomy of the centriacinar region. For these reasons, the usefulness of pulmonary carcinogenicity data from rats exposed to high concentrations of particles for quantitatively predicting lung cancer risk in humans exposed to much lower environmental or occupational concentrations has been questioned. The purpose of this investigation was to directly compare the anatomical patterns of particle retention and the lung tissue responses of rats and monkeys exposed chronically to high occupational concentrations of poorly soluble particles. Lung sections from male cynomolgus monkeys and F344 rats exposed 7 hr/day, 5 days/week for 24 months to filtered ambient air, diesel exhaust (2 mg soot/m3), coal dust (2 mg respirable particulate material/m3), or diesel exhaust and coal dust combined (1 mg soot and 1 mg respirable coal dust/m3) were examined histopathologically. The relative volume density of particulate material and the volume percentage of the total particulate material in defined pulmonary compartments were determined morphometrically to assess the relative amount and the anatomic distribution of retained particulate material. In all groups, relatively more particulate material was retained in monkey than in rat lungs. After adjustment for differences between rat and monkey controls, the coal dust- and the combined diesel exhaust and coal dust-exposed monkeys retained more particulate material than the coal dust- and the combined diesel exhaust and coal dust-exposed rats, respectively. There was no significant difference in the relative amount of retained particulate material between diesel exhaust-exposed monkeys and rats. Within each species, the sites of particle retention and lung tissue responses were the same for diesel soot, coal dust, and the combined material. Rats retained a greater portion of the particulate material in lumens of alveolar ducts and alveoli than monkeys. Conversely, monkeys retained a greater portion of the particulate material in the interstitium than rats. Rats, but not monkeys, had significant alveolar epithelial hyperplastic, inflammatory, and septal fibrotic responses to the retained particles. These results suggest that intrapulmonary particle retention patterns and tissue reactions in rats may not be predictive of retention patterns and tissue responses in primates exposed to poorly soluble particles at concentrations representing high occupational exposures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sites of particle retention and lung tissue responses to chronically inhaled diesel exhaust and coal dust in rats and cynomolgus monkeys.

The usefulness of pulmonary carcinogenicity data from rats exposed to high concentrations of particles for quantitatively predicting lung cancer risk in humans exposed to much lower environmental or occupational concentrations has been questioned. The results of several chronic inhalation bioassays of poorly soluble, nonfibrous particles have suggested that rats may be more prone than other rod...

متن کامل

Influence of exposure concentration or dose on the distribution of particulate material in rat and human lungs.

Differences among species in the anatomic sites of particle retention could influence responses to inhaled particles. In this study, we used morphometric techniques to examine the influence of exposure concentration on particle retention in histologic sections from rats and humans. The rats had been exposed for 24 months to diesel exhaust at 0.35, 3.5, or 7.0 mg soot/m(3). The human subjects we...

متن کامل

The effects of Eucheuma cottonii on alveolar macrophages and malondialdehyde levels in bronchoalveolar lavage fluid in chronically particulate matter 10 coal dust-exposed rats

Objective(s):To investigate the effect of Eucheuma cottonii on alveolar macrophages (AM) and malondialdehyde (MDA) levels in bronchoalveolar lavage fluids (BALF) in particulate matter 10 (PM10) coal dust-exposed rats. Materials and Methods: Ten groups, including a non exposed group and groups exposed to coal dust at doses of 6.25 (CD6.25), 12.5 (CD12.5), or 25 mg/m3 (CD25) an hour daily for 6 ...

متن کامل

Apoptosis and Bax Expression are Increased by Coal Dust in the Polycyclic Aromatic Hydrocarbon-Exposed Lung

BACKGROUND Miners inhaling respirable coal dust (CD) frequently develop coal workers' pneumoconiosis, a dust-associated pneumoconiosis characterized by lung inflammation and variable fibrosis. Many coal miners are also exposed to polycyclic aromatic hydrocarbon (PAH) components of diesel engine exhaust and cigarette smoke, which may contribute to lung disease in these workers. Recently, apoptos...

متن کامل

Pulmonary toxicity of inhaled diesel exhaust and carbon black in chronically exposed rats. Part I: Neoplastic and nonneoplastic lung lesions.

This study compared the pulmonary carcinogenicities and selected noncancer effects produced by chronic exposure of rats at high rates to diesel exhaust and carbon black. The comparison was intended to provide insight into the likely importance of the mutagenic organic compounds associated with the soot portion of diesel exhaust in inducing pulmonary carcinogenicity in diesel exhaust-exposed rat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fundamental and applied toxicology : official journal of the Society of Toxicology

دوره 37 1  شماره 

صفحات  -

تاریخ انتشار 1997